m - medial n - quasigroups
نویسنده
چکیده
For n ≥ 4, every n-medial n-quasigroup is medial. If 1 ≤ m < n, then there exist m-medial n-quasigroups which are not (m + 1)-medial.
منابع مشابه
Distributive and Trimedial Quasigroups of Order
We enumerate three classes of non-medial quasigroups of order 243 = 3 up to isomorphism. There are 17004 non-medial trimedial quasigroups of order 243 (extending the work of Kepka, Bénéteau and Lacaze), 92 non-medial distributive quasigroups of order 243 (extending the work of Kepka and Němec), and 6 non-medial distributive Mendelsohn quasigroups of order 243 (extending the work of Donovan, Gri...
متن کاملUNIVERSITATIS APULENSIS No 15 / 2008 G - N - QUASIGROUPS
In this paper we present criteria for an n-quasigroup to be isotopic to an n-group. We call a such n-quasigroup G−n-quasigroup. Applications to functional equations on quasigroups are presented in a subsequent paper. 2000 Mathematics Subject Classification: 20N15. Some important n-quasigroup classes are the following. An n-quasigroup (A,α) of the form α(x1 ) = n ∑ i=1 fi(xi)+a, where (A,+) is a...
متن کاملOn the Structure of Left and Right F-, Sm-and E-quasigroups
It is proved that any left F-quasigroup is isomorphic to the direct product of a left F-quasigroup with a unique idempotent element and isotope of a special form of a left distributive quasigroup. The similar theorems are proved for right F-quasigroups, left and right SM-and E-quasigroups. Information on simple quasigroups from these quasigroup classes is given, for example, finite simple F-qua...
متن کاملA note on medial quasigroups
In this short note we prove two results about medial quasigroups. First, let φ and ψ be binary operations defined by multiplication, left and right division in a medial quasigroup. Then φ and ψ are mutually medial, i.e. φ(ψ(a, b), ψ(c, d)) = ψ(φ(a, c), φ(b, d)). Second, four points a, b, c, d in an idempotent medial quasigroup form a parallelogram if and only if d = (a / b)(b \ c).
متن کاملSemi-planar Steiner quasigroups of cardinality 3n
It is well known that for each n ≡ 1 or 3 (mod 6) there is a planar Steiner quasigroup (briefly, squag) of cardinality n (Doyen (1969) and Quackenbush (1976)). A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element subsquag (Quackenbush (1976)). In fact, Quakenbush has stated that there should be such semi-planar squags. In this paper, we construct a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010